- weak boundedness
- мат.слабая ограниченность
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Weak formulation — Weak formulations are an important tool for the analysis of mathematical equations that permit the transfer of concepts of linear algebra to solve problems in other fields such as partial differential equations. In a weak formulation, an equation … Wikipedia
Weak convergence (Hilbert space) — In mathematics, weak convergence is a type of convergence of a sequence of points in a Hilbert space (and, more generally, in a Banach space). DefinitionA sequence of points (x n) in a Hilbert space H , with n an integer, is said to converge… … Wikipedia
Marcinkiewicz interpolation theorem — In mathematics, the Marcinkiewicz interpolation theorem, discovered by Józef Marcinkiewicz (1939), is a result bounding the norms of non linear operators acting on Lp spaces. Marcinkiewicz theorem is similar to the Riesz–Thorin theorem about … Wikipedia
Galerkin method — In mathematics, in the area of numerical analysis, Galerkin methods are a class of methods for converting a continuous operator problem (such as a differential equation) to a discrete problem. In principle, it is the equivalent of applying the… … Wikipedia
Totally bounded space — In topology and related branches of mathematics, a totally bounded space is a space that can be covered by finitely many subsets of any fixed size (where the meaning of size depends on the given context). The smaller the size fixed, the more… … Wikipedia
Compact operator on Hilbert space — In functional analysis, compact operators on Hilbert spaces are a direct extension of matrices: in the Hilbert spaces, they are precisely the closure of finite rank operators in the uniform operator topology. As such, results from matrix theory… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Arzelà–Ascoli theorem — In mathematics, the Arzelà–Ascoli theorem of functional analysis gives necessary and sufficient conditions to decide whether every subsequence of a given sequence of real valued continuous functions defined on a closed and bounded interval has a… … Wikipedia
Bounded set (topological vector space) — In functional analysis and related areas of mathematics, a set in a topological vector space is called bounded or von Neumann bounded, if every neighborhood of the zero vector can be inflated to include the set. Conversely a set which is not… … Wikipedia
List of functional analysis topics — This is a list of functional analysis topics, by Wikipedia page. Contents 1 Hilbert space 2 Functional analysis, classic results 3 Operator theory 4 Banach space examples … Wikipedia
Sobolev space — In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp norms of the function itself as well as its derivatives up to a given order. The derivatives are understood in a suitable weak sense… … Wikipedia